One undesirable side effect of a conventional differential is that it can reduce overall torque - the rotational force which propels the vehicle. The amount of torque required to propel the vehicle at any given moment depends on the load at that instant - how heavy the vehicle is, how much drag and friction there is, the gradient of the road, the vehicle's momentum, and so on. For the purpose of this article, we will refer to this amount of torque as the "threshold torque".
The torque applied to each driving roadwheel is a result of the engine and transmission applying a twisting force against the resistance of the traction at that roadwheel. Unless the load is exceptionally high, the engine and transmission can usually supply as much torque as necessary, so the limiting factor is usually the traction under each wheel. It is therefore convenient to define traction as the amount of torque that can be generated between the tire and the road surface, before the wheel starts to slip. If the total traction under all the driven wheels exceeds the threshold torque, the vehicle will be driven forward; if not, then one or more wheels will simply spin.
To illustrate how a differential can limit overall torque, imagine a simple rear-wheel drive vehicle, with one rear roadwheel on asphalt with good grip, and the other on a patch of slippery ice. With the load, gradient, etc., the vehicle requires, say, 2,000 newton metres (1,480 ftキlbf) of torque to move forward (i.e. the threshold torque). Let us further assume that the non-spinning traction on the ice equates to 400 Nキm (300 ftキlbf), and the asphalt to 3,000 Nキm (2,210 ftキlbf).
If the two roadwheels were driven without a differential, each roadwheel would be supplied with an equal amount of torque, and would push against the road surface as hard as possible. The roadwheel on ice would quickly reach the limit of traction (400 Nm), but would be unable to spin because the other roadwheel has good traction. The traction of the asphalt plus the small extra traction from the ice exceeds the threshold requirement, so the vehicle will be propelled forward.
With a differential, however, as soon as the "ice wheel" reaches 400 Nm, it will start to spin, and then develop less traction ~300 Nm. The planetary gears inside the differential carrier will start to rotate because the "asphalt wheel" encounters greater resistance. Instead of driving the asphalt wheel with more force, the differential will still symmetrically split the total amount of available torque equally. ~300 Nm is sufficient to make the ice wheel to spin, but the equal amount of ~300 Nm is not enough to turn the asphalt wheel. Since the asphalt wheel remains stationary, the spinning ice wheel will rotate twice as fast as before. As the actual torque on both roadwheels is the same - the amount is determined by the lesser traction of the ice wheel. So both wheels will get 300 Nm each. Since 600 Nm is less than the required threshold torque of 2000 Nm, the vehicle will not be able to utilise the output from the engine, and will not move.
An observer will simply see one stationary roadwheel on one side of the vehicle, and one spinning roadwheel on the opposite side. It will not be obvious that both wheels are generating the same torque (i.e. both wheels are in fact pushing equally, despite the difference in rotational speed). This has led to a widely held misconception that a vehicle with a differential is really only "one-wheel-drive". In fact, a normal differential always allows the transmission of equal torque to both driven roadwheels; unless it is a specific type of differential, such as locking, torque-biasing, or limited slip type.
A proposed way to distribute the power to the wheels, is to use the concept of gearless differential, of which a review has been reported by Provatidis [2], but the various configurations seem to correspond either to the "sliding pins and cams" type, such as the ZF B-70 available for early VWs, or are a variation of the ball differential.